Биологическое значение экзосом опухолевых клеток

08.08.2018

Биологическое значение экзосом опухолевых клеток


М.В. Тихонова1, Д.В. Литвинов1, А.И. Карачунский1, В.И. Поспелов2, А.Г. Румянцев1

  1. Национальный научно-практический центр детской гематологии, онкологии и иммунологииим. Дмитрия Рогачёва, Москва, Российская Федерация

  2. ЗАО «Генетические технологии и анализы», Москва, Российская Федерация


Известный в течение полувека биологический процесс апоптоза клеток, сопровождаемый секрецией экзосом в биологические жидкости организма, в течение последних лет получил новое развитие. Оказалось, что циркулирующие ядерные и экзосомальные нуклеиновые кислоты, мРНК, микроРНК, множественные белки, липопротеины и другие биологические вещества циркулируют в «упаковке» из плазматической мембраны клетки-хозяина в жидких средах организма и способны оказывать обратное влияние на клетки-продуценты, включая презентацию содержащихся в экзосомах антигенов, влияющих на иммунный ответ, регуляцию межклеточных взаимодействий и канцерогенез. В обзоре представлены материалы по изучению экзосом опухолевых клеток и подходов к использованию экзосом в персонифицированной комбинированной химоэкзосомной терапии онкологических заболеваний.

ВВЕДЕНИЕ

История медицины ХХ века — во многом путь открытий и изучения способов передачи и реализации биологической информации. С каждым десятилетием наука продвигалась от более крупных структур организма к более мелким, от тканей к клеткам, от клеток к их органеллам, от органелл к наночастицам. Так, в 1980 г. при использовании прижизненной оценки эритроцитов у детей с наследственным сфероцитозом был описан процесс образования экзосом [1]. Позже, в 1983 г. были описаны экзосомы при изучении дифференцировки ретикулоцитов, которым в будущем был присвоен статус «бутылочной почты» организма [2]. Параллельно при внедрении оптической голографии циркулирующих клеток крови было показано, что секреция экзосом является не только общебиологическим процессом, характерным для всех клеток организма, но и следствием старения клеток [3].

Экзосомы, по сути своей, — это природные эндогенные наночастицы (30–100 нм в диаметре), которые клетка секретирует во внешнюю среду. Проще говоря, клетки сбрасывают белки, липиды и различные виды РНК в «упаковке» из собственной плазматической мембраны, «приклеив» наклейки-маркеры — церамиды. Одна экзосома может нести в себе до 4000 различных белков, более 1500 мРНК и микроРНК и даже молекулы ДНК. Поскольку огромный объем информации в экзосомах не рассматривался как потенциально возможный механизм передачи информации, их рассматривали как «мусорные мешки», с помощью которых клетка избавляется от избытка цитоплазмы во время старения/апоптоза. В конце ХХ века ученые выяснили, что экзосомы могут принимать участие в регуляции иммунных процессов организма, что делало их роль значительно более важной [4–6]. К 2007 г. стало известно, что эти частицы несут в себе огромный объем микроРНК и матричных РНК, что доказывало их участие в фенотипической изменчивости клеток-мишеней [7–9]. В настоящее время известно, что экзосомы присутствуют во всех биологических жидкостях живого организма, включая кровь, слюну, слезную и спинномозговую жидкость и даже грудное молоко [10].

Функции экзосом очень многообразны, это и презентация антигенов, и регуляция межклеточных взаимодействий, участие в секреции белков, иммунном ответе и канцерогенезе.

ЭКЗОСОМЫ

Терминология и дефиниции

Термин «экзосома» фигурирует в литературе под разными формулировками — микрочастицы, эктосомы, микровезикулы, онкосомы, дексосомы, апоптотические тельца, акросомы и т.д. Какие-то из этих терминов появились в результате работы ученых со специфическими тканями. К таким относятся онкосома, эктосома, акросома, дексосома.

В свою очередь термины «микрочастица» и «микровезикула» являются обобщающими, а апоптотическое тельце вообще относится к частице с другой функ-цией и строением.

Наиболее точным определением экзосомы является следующее. Экзосома — это внеклеточная мембранная частица размерами от 30 до 100 нм, имеющая эндоцитозное происхождение, которая образуется в процессе формирования мультивезикулярного тельца и секретируется в межклеточное пространство [11]. Экзосомы являются результатом четырех последовательных процессов — инициации, эндоцитоза, формирования мультивезикулярного тела, секреции [12]. Процесс образования экзосомы начинается с инвагинации микродоменов цитоплазматической мембраны с формированием ранней эндосомы. Дальнейшая судьба сформированной частицы будет зависеть от специальной ферментной системы G-белков (GTP-aз) Rab-семейства. Rab-5 белок связывается с ранней эндосомой, запуская работу эффекторных белков — раннего эндосомального антигена 1, фосфоинозитол-3-киназы, рабенозина-5. Их взаимодействие формирует комплекс-стабилизатор GDP/GTP Rabex-5 для активной формы белка Rab-5, который определяет дальнейшее слияние мембран и «узнавание» только тех белков, которые имеют в своей структуре так называемый специфический домен FYVE [13]. Таким образом, происходит связывание комплекса GDP/GTP Rabex-5 с FYVE-доменом белкового комплекса ESCRT-0 (Endosomal Sorting Complex Required for Transport). Этот процесс, в свою очередь, способствует сборке остальных частей комплекса ESCRT-0 на уже сформировавшейся эндосомальной мембране, что приводит к организации комплексов ESCRT-1 и ESCRT-2, влияющих на дальнейшую инвагинацию мембраны с формированием мультивезикулярного тельца и комплекса ESCRT-3. Именно ESCRT-3 опосредует окончательное формирование микровезикул и их «отшнуровывание» от материнских клеток [14]. Этот путь в настоящее время является основным в формировании экзосом.

Как уже было сказано, судьба ранней экзосомы зависит от GTP-aз Rab. Так, Rab-7 ведет раннюю Rab-5 позитивную эндосому по пути деградации и слияния с лизосомой, а белки Rab11, Rab27A, Rab27B и Rab35, напротив, приводят ее к секреции в виде экзосомы во внеклеточное пространство [15]. Таким образом, идет сепарация внутриклеточного «мусора» от значимой информации в виде белков, различных видов РНК и ДНК.

Секреция экзосом ускоряется при воздействии на организм неблагоприятных факторов, таких как стресс и перегрузки, а также за счет низких значений pH среды, повышения внутриклеточной концентрации ионов кальция, тепловом шоке. В постоперационном периоде и на этапе проведения химиотерапии у пациентов с онкологическими заболеваниями также повышается выработка этих частиц. Секреция экзосом в межклеточное пространство происходит путем слияния мультивезикулярного тельца с мембраной клетки. Тем самым экзосомы получают не только собственную мембрану, но и трансмембранные белки материнской клетки, что опосредует их вступление во взаимодействия, характерные для клетки-донора [16].

Свойства мембраны и характеристика состава экзосом

Множество нанопузырьков, «одетых» в мембрану, в огромных количествах циркулируют в биологических жидкостях человека. В частности, в 1 мкл крови содержится более 3 000 000 экзосом. Каждая из них окружена мембраной, которая по своему качественному составу не отличается от клеточной, однако входящие в нее фосфолипиды более сбалансированы [17]. В ней чаще происходит перемещение липидов из внутренней поверхности мембраны в наружную (флип-флоп) [18], а сами частицы обладают повышенной устойчивостью в различных диапазонах физиологического pH внутриклеточной жидкости [19].

В составе экзосом присутствуют белковые и РНК молекулы. Все белки в экзосомах можно разделить на 2 группы — неспецифичные и тканеспецифичные. Нетканеспецифичные белки, такие как белки теплового шока HSC70, HSP90, тетраспанины, аннексины и флотилины, присутствуют практически во всех экзосомах. Тканеспецифические белки зависят от принадлежности к тканям, клетки которых выработали ту или иную экзосому: например, HER-2 для тканей рака молочной железы или МНСII для дендритных клеток и B-лимфоцитов. Большинство белков экзосом можно также распределить на несколько групп по их функциональному назначению: белки цитоскелета, белки комплекса гистосовместимости, белки сигнальной трансдукции, белки слияния и стыковки мембран, белки теплового шока. Наиболее часто в экзосомах встречаются 25 белков, среди которых белок теплового шока 70кДА, СD9, CD 81, CD 63, альбумин, лактатдегидрогеназа А, синтеин, аннексин А5, альдолаза А, кофилин 1 и др. [18, 20, 21].

Что же до различных видов РНК, в экзосомах преобладают матричные и микроРНК, причем сывороточные экзосомы и экзосомы мочи также содержат тРНК, рРНК, миРНК и маРНК [22]. Наиболее изучены свойства микроРНК экзосом, которые участвуют в регуляции экспрессии генов на посттранскрипционном этапе, и матричных РНК, которые при переносе от родительской клетки к клетке-мишени способны участвовать в регуляции фенотипических свойств этих клеток. Функции других видов РНК экзосом в настоящее время находятся на стадии изучения.

Мы также знаем, что экзосомы могут нести в себе молекулы ДНК. Какова их роль? К сожалению, на данный момент назначение их неизвестно. Многие ученые рассматривают экзосомальные ОНКОПЕДИАТРИЯ / 2017 / том 4 / № 2

ДНК как артефакт, другие считают, что информация о наличии ДНК в экзосомах изначально является ошибкой: учитывая сложную технологию выделения экзосом и наличие на них белка CD9, за экзосомы могли быть приняты апоптотические тельца, действительно несущие в себе молекулы ДНК, но имеющие другое строение и массу, значительно большую, чем экзосома (100–220 нм). В любом случае, изучение состава экзосом имеет важное значение для понимания их функционирования и роли в межклеточных взаимодействиях [23].

Клеточно-экзосомальные контакты

(обратная связь)

В отличие от обсуждаемого состава экзосом (а это процесс бесконечного изучения, так как в организме человека циркулируют и экзосомы микробиоты), механизмы взаимодействия экзосом с клетками-реципиентами достаточно хорошо изучены. На текущий момент можно выделить 4 основных пути клеточно-экзосомальных взаимодействий:

  1. прикрепление и слияние мембраны экзосомы с мембраной клетки-мишени, в результате чего белки мембраны экзосомы переходят в плазматическую мембрану клетки [24];

  2. поглощение клеткой-мишенью экзосомы методом транс- и эндоцитоза, что приводит к высвобождению содержимого микрочастицы в цитоплазму клетки [25];

  3. лигандрецепторные взаимодействия между клетками и экзосомами без слияния мембран

[4];

  1. влияние компонентов экзосом после лизиса экзосомальной мембраны в межклеточной среде [26].

Используя все эти механизмы, экзосомы могут регулировать межклеточные взаимодействия, рост, развитие и фенотипическую изменчивость клеток, а следовательно, играть роль в процессах канцерогенеза.

Экзосомы и канцерогенез

Экзосомы, секретируемые опухолевыми клетками, обладают значительным влиянием на рост и развитие злокачественных образований, их отдаленное метастазирование, патологический ангиогенез, химиорезистентность и уход малигнизированной клетки от иммунного надзора. Экзосомы могут не только формировать иммунопривилегированную среду внутри опухолевой ткани [27], но и переносить проапоптотические молекулы (Fasлиганд, TRIAL), вызывающие гибель активированных противоопухолевых Т-лимфоцитов [28].

Одно из самых неприятных свойств опухолевых экзосом при канцерогенезе — их участие в отдаленном метастазировании. Невозможно выразить их действие более точно, чем B. Pultz и соавт. в статье «Многогранная роль экстрацеллюлярных везикул в метастазировании: Подготовка почвы к посеву» [29], в которой подробно описаны механизмы, с помощью которых экзосомы опухолевых клеток способствуют адгезии, инвазии и росту злокачественных клеток, метастазирующих из первичного очага. Злокачественные новообразования секретируют экзосомы, несущие молекулы кадгерин-11, ADAM-17, ADAM-10, которые помогают опухоли метастазировать [30], а также переносят интегрины, способствующие адгезии опухолевых клеток и увеличению экспрессии некоторых генов, ответственных за инвазию, например MT1-MMP [31].

В 2016 г. B. Sung и A. Weaver провели эксперимент, при котором миграция клеток фибросаркомы по градиенту концентрации опухолевых экзосом в сыворотке была остановлена путем блокировки уже известной нам GTP-азы Rab27A [32]. Таким образом, экзосомы не только «готовят» участок под будущий метастатический очаг, но и приводят туда малигнизированные клетки посредством хемотаксиса.

Как уже было сказано, экзосомы могут обеспечивать химиорезистентность опухоли. Пример такого действия описан в работе J. Crow и соавт., в которой была доказана роль экзосом в резистентности рака яичников к препаратам платины. Более того, при проведении эксперимента, в котором авторы взяли чувствительную к платине культуру клеток А2780 и внесли в нее экзосомы, выработанные платинорезистентной клеточной линией рака яичников OVCAR10, клетки А2780 не только стали резистентными к платине, но и сами стали производить экзосомы, воздействуя на новые наивные клетки своей линии [33].

Несмотря на все удручающие эффекты экзосом в канцерогенезе, имеются публикации, демонстрирующие противоопухолевую, терапевтическую активность экзосом здоровых клеток. Например, перенос miR-16, секретируемых мультипотентными мезенхимальными стромальными клетками, ингибирует ангиогенез в опухоли [34]. В работе Е. Koh и соавт. описано, как СD47, обеспечивающий защитный сигнал «не-ешь-меня» на поверхности опухолевых клеток при контакте с протеином фагоцитов SIRPa был заблокирован с помощью экзосом, что привело к значительному усилению фагоцитоза злокачественных клеток и индукции противоопухолевой активности Т-клеток [35]

ЗАКЛЮЧЕНИЕ

Оригинальные исследования по экзосомам опухолевых клеток в нашей стране проводились в 2000–2010 гг. профессором А.С. Белохвостовым, безвременно ушедшим из жизни в 2010 г. В настоящее время его коллегами и учениками ведутся работы по получению из опухолевых клеток, и модификации экзосом in vitro с целью их использования в качестве таргетных нанопрепаратов против онкозаболеваний. Разрабатываются новые технологии по выявлению и выделению специфических и неспецифических экзосом, использованию их в качестве диагностических и прогностических маркеров при злокачественных опухолях, а также как естественных эндогенных и полученных in vitro вакцин, позволяющих персонализировать терапию каждого пациента.

Исследование и публикация работы проведены без внешнего финансирования.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.
  1. Румянцев А.Г., Метелкин А.Н., Манин В.Н. Анализ формы и размеров эритроцитов при наследственном сфероцитозе и у здоровых детей методом топографической интрафазометрии // Педиатрия. Журнал им. Г.Н. Сперанского. 1980. — Т.59. — №5 — C. 43–45. [Rumyantsev AG, Metelkin AN, Manin VN. Analiz formy i razmerov eritrotsitov pri nasledstvennom sferotsitoze i u zdorovykh detei metodom topograficheskoi intrafazometriи.

Pediatriia. 1980;59(5):43–45. (In Russ).]

  1. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–977. doi: 10.1016/00928674(83)90040-5.

  2. Вельтищев Ю.Е., Князев Ю.А., Степанов В.М., и др. Возможности использования оптической голографии в клинических исследованиях // Советская медицина. — 1983. — №2. — C. 54–59. [Vel’tishchev YuE, Knyazev YuA, Stepanov VM, et al. Vozmozhnosti ispol’zovaniya opticheskoi golografii v klinicheskikh issledovaniyakh. Sovetskaya meditsina.

1983;(2):54–59. (In Russ).]

  1. Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp

Med. 1996;183(3):1161–1172. doi: 10.1084/ jem.183.3.1161.

  1. Белохвостов А.С., Румянцев А.Г. Мониторинг мутантных генов опухолевого происхождения в плазме и клетках крови онкогематологических и онкологических больных // Гематология и трансфузиология. — 2002. — Т.47. — №1 — C. 75. [Belokhvostov AS, Rumyantsev AG. Monitoring mutantnykh genov opukholevogo proiskhozhdeniya v plazme i kletkakh krovi onkogematologicheskikh i onkologicheskikh bol’nykh. Gematol Transfuziol. 2002;47(1):75. (In Russ).]

  2. Белохвостов А.С., Румянцев А.Г. Онкомаркеры. Молекулярно-генетические, иммунохимические, биохимические анализы. — М.: Макс-Пресс; 2002. — 90 с. [Belokhvostov AS, Rumyantsev AG. Onkomarkery. Molekulyarno-geneticheskie, immunokhimicheskie, biokhimicheskie analizy. Moscow: Maks-Press; 2002. 90 p. (In Russ).]

  3. Вдовиченко К.К., Белохвостов А.С., Маркова С.И., и др. Особенности выявления мутантной формы гена B-raf в плазме крови и при онкологических заболеваниях // Вопросы гематологии, онкологии и иммунопатологии в педиатрии. — 2004. — Т.3. — №2 — С. 37–39. [Vdovichenko KK, Belokhvostov AS, Markova SI, et al. Specific features of determining a mutant form of the gene B-raf in blood plasma in oncologic diseases. Pediatric haematology/oncology and immunopathology. 2004;3(2):37–39. (In Russ).]

  4. Valadi H, Ekstrom K, Bossios A, et al. Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ ncb1596.

  5. Белохвостов А.В., Доудерд Ф., Пахомов А.В., и др. Роль гена Р35 в патогенезе онкологических заболеваний. Полиморфизм и мутации // Вопросы гематологии, онкологии и иммунопатологии в педиатрии. — 2008. — Т.7. — №3 — С. 28–35. [Belokhvostov AV, Douderd F, Pakhomov AV, et al. Rol’ gena R35 v patogeneze onkologicheskikh zabolevanii. Polimorfizm i mutatsii. Pediatric haematology/oncology and immunopathology. 2008;7(3):28–35. (In Russ).]

  6. Храмцов А.И., Храмцова Г.Ф., Хмельницкая Н.М. Технология тканевых матриц в современном диагностическом и научном исследовании // Вопросы онкологии. — 2010. — Т.56. — №2 — С. 240–244. [Khramtsov AI, Khramtsova GF, Khmel’nitskaya NM. Tekhnologiya tkanevykh matrits v sovremennom diagnosticheskom i nauchnom issledovanii. Problems in oncology. 2010;56(2):240–244. (In Russ).]

  7. Тамкович С.Н., Тутано О.С., Лактионов П.П. Экзосомы: механизмы возникновения, состав, транспорт, биологическая активность, использование в диагностике // Биологические мембраны: Журнал мембранной и клеточной биологии. — 2016. — Т.33. — №3 — С. 163–175. [The translated variant: Tamkovich SN, Tutanov OS, Laktionov PP. Exosomes: generation, structure, transport, biological activity, and diagnostic application. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2016;10(3):163– 173. doi: 10.1134/S1990747816020112.] doi: 10.7868/S0233475516020122.

  8. Kharaziha P, Ceder S, Li Q, Panaretakis T. Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta. 2012;1826(1):103–111. doi:

10.1016/j.bbcan.2012.03.006.

  1. Spang A, Shiba Y, Randazzo PA. Arf GAPs: gatekeepers of vesicle generation. FEBS Lett. 2010;584(12):2646–2651. doi: 10.1016/j.febslet.2010.04.005.

  2. Hurley JH. The ESCRT complexes. Crit Rev Biochem Mol Biol. 2010;45(6):463–487. doi:

10.3109/10409238.2010.502516.

ОНКОПЕДИАТРИЯ / 2017 / том 4 / № 2
  1. Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30. doi: 10.1038/ncb2000.

  2. Mathivanan S, Ji H, Simpson RJ. Exosomes: Extracellular organelles important in intercellular communication. J Proteomics. 2010;73(10):1907– 1920. doi: 10.1016/j.jprot.2010.06.006.

  3. Belting M, Wittrup A. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell

Biol. 2008;183(7):1187–1191. doi: 10.1083/ jcb.200810038.

  1. Laulagnier K, Motta C, Hamdi S, et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J. 2004;380(Pt 1):161–171. doi: 10.1042/BJ20031594.

  2. Staubach S, Razawi H, Hanisch FG. Proteomics of MUC1-containing lipid rafts from plasma membranes and exosomes of human breast carcinoma cells MCF-7. Proteomics. 2009;9(10):2820–2835. doi: 10.1002/pmic.200800793.

  3. Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940– 948. doi: 10.1016/j.bbagen.2012.03.017.

  4. Keller S, Konig AK, Marme F, et al. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett. 2009;278(1):73–81. doi: 10.1016/j. canlet.2008.12.028.

  5. Li M, Zeringer E, Barta T, et al. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc Lond B Biol Sci. 2014;369(1652):20130502. doi: 10.1098/rstb.2013.0502.

  6. Crescitelli R, Lasser C, Szabo TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, mi-crovesicles and exosomes. J Extracell Vesicles. 2013;2(1):20677. doi: 10.3402/ jev.v2i0.20677.

  7. Rieu S, Geminard C, Rabesandratana H, et al. Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha4beta1. Eur J Biochem. 2000;267(2):583–590. doi: 10.1046/j.1432-1327.2000.01036.x.

  8. Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 2004;104(10):3257–3266. doi: 10.1182/blood-2004-03-0824.

  9. Григорьева А.Е., Тамкович С.Н., Еремина А.В., и др. Экзосомы слезной жидкости здоровых людей: выделение, идентификация и характеризация // Биомедицинская химия. — 2016. — Т.62. — №1 — С. 99–106. [Grigor’eva AE, Tamkovich SN, Eremina AV, et al. Characteristics of exosomes andmicroparticles discovered in human tears.

Biomed Khim. 2016;62(1):99–106. (In Russ).] doi: 10.18097/PBMC20166201099.

  1. Savina A, Furlan M, Vidal M, Colombo MI. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem. 2003;278(22):20083– 20090. doi: 10.1074/jbc.M301642200.

  2. Kim JW, Wieckowski E, Taylor DD, et al. Fas ligandpositive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res. 2005;11(3):1010– 1020.

  3. Dos Anjos Pultz B, Andrés Cordero da Luz F, Socorro Faria S, et al. The multifaceted role of extracellular vesicles in metastasis: priming the soil for seeding. Int J Cancer. 2017;140(11):2397–2407. doi: 10.1002/ ijc.30595.

  4. Higginbotham JN, Demory Beckler M, Gephart JD, et al. Amphiregulin exosomes increase cancer cell invasion. Curr Biol. 2011;21(9):779–786. doi:

10.1016/j.cub.2011.03.043.

  1. Hendrix A, Hume AN. Exosome signaling in mammary gland development and cancer. Int J Dev Biol. 2011;55(7–9):879–887. doi: 10.1387/ ijdb.113391ah.
  2. Sung BH, Weaver AM. Exosome secretion promotes chemotaxis of cancer cells. Cell Adh Migr. 2017;11(2):187– 195. doi: 10.1080/19336918.2016.1273307.

  3. Crow J, Atay S, Banskota S, et al. Exosomes as mediators of platinum resistance in ovarian cancer. Oncotarget. 2017;8(7):11917–11936. doi: 10.18632/oncotarget.14440.

  4. Lee JK, Park SR, Jung BK, et al. Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE. 2013;8(12):e84256. doi: 10.1371/ journal.pone.0084256.

  5. Koh E, Lee EJ, Nam GH, et al. Exosome-SIRP alpha, a CD47 blockade increases cancer cell phagocytosis.